SN65C3221-Q1 3-V TO 5.5-V SINGLE-CHANNEL RS-232 COMPATIBLE LINE DRIVER/RECEIVER

SLLS616B - APRIL 2004 - REVISED APRIL 2008

- **Qualified for Automotive Applications**
- Operates With 3-V to 5.5-V V_{CC} Supply
- Operates Up To 1 Mbit/s
- Low Standby Current . . . 1 μA Typical
- External Capacitors . . . $4 \times 0.1 \mu F$
- Accepts 5-V Logic Input With 3.3-V Supply
- **RS-232 Bus-Pin ESD Protection Exceeds** ±15 kV Using Human-Body Model (HBM)
- **Auto-Powerdown Feature Automatically Disables Drivers for Power Savings**
- **Applications**
 - Battery-Powered, Hand-Held, and Portable Equipment
 - PDAs and Palmtop PCs
 - Notebooks, Sub-Notebooks, and Laptops
 - Digital Cameras
 - Mobile Phones and Wireless Devices

DB or PW PACKAGE (TOP VIEW) $\overline{\mathsf{EN}}$ 16 FORCEOFF 15 V_{CC} C1+ [2 14∏ GND V+ **[**]3 13**∏** DOUT C1- Π 4 12 FORCEON C2+ [5 11 DIN C2-V− **∏**7 10 INVALID 9∏ ROUT RIN 8

description/ordering information

The SN65C3221 consists of one line driver, one line receiver, and a dual charge-pump circuit with ±15-kV ESD protection pin to pin (serial-port connection pins, including GND). This device provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. This device operates at data signaling rates up to 1 Mbit/s and a driver output slew rate of 24 V/us to 150 V/us.

Flexible control options for power management are available when the serial port is inactive. The auto-powerdown feature functions when FORCEON is low and FORCEOFF is high. During this mode of operation, if the device does not sense a valid RS-232 signal on the receiver input, the driver output is disabled. If FORCEOFF is set low and EN is high, both the driver and receiver are shut off, and the supply current is reduced to 1 µA. Disconnecting the serial port or turning off the peripheral drivers causes the auto-powerdown condition to occur. Auto-powerdown can be disabled when FORCEON and FORCEOFF are high. With auto-powerdown enabled, the device is activated automatically when a valid signal is applied to the receiver input. The INVALID output notifies the user if an RS-232 signal is present at the receiver input. INVALID is high (valid data) if the receiver input voltage is greater than 2.7 V or less than -2.7 V, or has been between -0.3 V and 0.3 V for less than 30 μs. INVALID is low (invalid data) if the receiver input voltage is between -0.3 V and 0.3 V for more than 30 μs. See Figure 5 for receiver input levels.

ORDERING INFORMATION[†]

TA	PACKAGE [‡]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	TSSOP (PW)	Reel of 2000	SN65C3221IPWRQ1	3221Q1
-40°C to 85°C	SSOP (DB)	Reel of 2000	SN65C3221IDBRQ	3221Q1

[†] For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at http://www.ti.com.

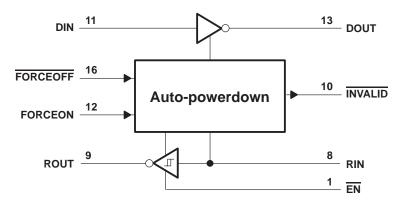
[‡] Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Function Tables

EACH DRIVER

		INPUTS	OUTPUT		
DIN	FORCEON	FORCEOFF	VALID RIN RS-232 LEVEL	DOUT	DRIVER STATUS
Х	Χ	L	Х	Z	Powered off
L	Н	Н	Х	Н	Normal operation with
Н	Н	Н	X	L	auto-powerdown disabled
L	L	Н	Yes	Н	Normal operation with
Н	L	Н	Yes	L	auto-powerdown enabled
L	L	Н	No	Z	Powered off by
Н	L	Н	No	Z	auto-powerdown feature


H = high level, L = low level, X = irrelevant, Z = high impedance

EACH RECEIVER

	INPUTS				
RIN	EN	VALID RIN RS-232 LEVEL	OUTPUT ROUT		
L	L	X	Н		
Н	L	X	L		
X	Н	X	Z		
Open	L	No	Н		

H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = disconnected input or connected driver off

logic diagram (positive logic)

SN65C3221-Q1 3-V TO 5.5-V SINGLE-CHANNEL RS-232 COMPATIBLE LINE DRIVER/RECEIVER

SLLS616B - APRIL 2004 - REVISED APRIL 2008

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC} (see Note 1)	0.3 V to 6 V
Positive output supply voltage range, V+ (see Note 1)	
Negative output supply voltage range, V– (see Note 1)	0.3 V to -7 V
Supply voltage difference, V+ – V– (see Note 1)	13 V
Input voltage range, V _I : Driver (FORCEOFF, FORCEON, EN)	0.3 V to 6 V
Receiver	–25 V to 25 V
Output voltage range, VO: Driver	–10 V to 13.2 V
Receiver (INVALID)	\dots -0.3 V to V _{CC} + 0.3 V
Package thermal impedance, θ_{JA} (see Note 2 and Note 3)	108°C/W
Operating virtual junction temperature, T _J	150°C
Storage temperature range, T _{sta}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 4 and Figure 6)

				MIN	NOM	MAX	UNIT
	Complementaria		V _{CC} = 3.3 V	3	3.3	3.6	٧
	Supply voltage		$V_{CC} = 5 V$	4.5	5	5.5	V
,,	Driver and control high-level input voltage	DIN FORCES FORCES IN	$V_{CC} = 3.3 \text{ V}$	2			.,
VIH		DIN, FORCEOFF, FORCEON, EN	V _{CC} = 5 V	2.4			V
V_{IL}	Driver and control low-level input voltage	DIN, FORCEOFF, FORCEON, EN				0.8	V
٧ı	Driver and control input voltage	DIN, FORCEOFF, FORCEON		0		5.5	V
٧ı	V _I Receiver input voltage			-25		25	V
TA	Operating free-air temperature			-40		85	°C

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V $_{CC}$ = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V $_{CC}$ = 5 V \pm 0.5 V.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 6)

	PARAM	IETER	TEST CONDITIONS	MIN	TYP [‡]	MAX	UNIT
Ц	Input leakage current	FORCEOFF, FORCEON, EN			±0.01	±1	μΑ
		Auto-powerdown disabled	No load, FORCEOFF and FORCEON at V _{CC}		0.3	1	mA
loc	Supply current	Powered off	No load, FORCEOFF at GND		1	10	
lcc	(T _A = 25°C)	Auto-powerdown enabled	No load, FORCEOFF at V _{CC} , FORCEON at GND, All RIN are open or grounded		1	10	μΑ

[‡] All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25^{\circ}\text{C}$.

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

NOTES: 1. All voltages are with respect to network GND.

^{2.} Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

^{3.} The package thermal impedance is calculated in accordance with JESD 51-7.

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 6)

	PARAMETER	TEST	CONDITIONS	MIN	TYP†	MAX	UNIT
Vон	High-level output voltage	DOUT at R _L = $3 \text{ k}\Omega$ to GND,	DIN = GND	5	5.4		V
VOL	Low-level output voltage	DOUT at R _L = $3 \text{ k}\Omega$ to GND,	DIN = V _{CC}	-5	-5.4		V
lн	High-level input current	VI = VCC			±0.01	±1	μΑ
I _I L	Low-level input current	V _I at GND			±0.01	±1	μΑ
	Object singuity and an experience of	$V_{CC} = 3.6 \text{ V},$	V _O = 0 V		±35	±60	4
los	Short-circuit output current‡	V _{CC} = 5.5 V,	VO = 0 V		±35	±75	mA
r _O	Output resistance	V_{CC} , V+, and V- = 0 V,	$V_O = \pm 2 V$	300	10M		Ω
l _{off}	Output leakage current	FORCEOFF = GND	$V_O = -10 \text{ V to } +12 \text{ V},$ $V_{CC} = 3 \text{ V to } 3.6 \text{ V}$			±25	μА
			$V_O = \pm 10 \text{ V}, V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$			±25	

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25^{\circ}\text{C}$.

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 6)

	PARAMETER		TEST CONDITIONS		MIN	TYP†	MAX	UNIT
			C _L = 1000 pF		250			
	Maximum data rate (see Figure 1)	$R_L = 3 k\Omega$	C _L = 250 pF,	V _{CC} = 3 V to 4.5 V	1000			kbit/s
			C _L = 1000 pF,	V _{CC} = 4.5 V to 5.5 V	1000			
tsk(p)	Pulse skew§	C _L = 150 pF to 2500 pF	$R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega,$	See Figure 2		100		ns
SR(tr)	Slew rate, transition region (see Figure 1)	V_{CC} = 3.3 V, R _L = 3 kΩ to 7 kΩ	C _L = 150 pF to 1000 pF		24		150	V/μs

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25^{\circ}\text{C}$.

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

ESD protection

TERM	INAL	TEGT CONDITIONS	TVD	
NAME	NO.	TEST CONDITIONS T		UNIT
DOUT	13	НВМ	±15	kV

^{\$} Short-circuit durations should be controlled to prevent exceeding the device absolute power-dissipation ratings, and not more than one output should be shorted at a time.

[§] Pulse skew is defined as |tpLH - tpHL| of each channel of the same device.

RECEIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 6)

	PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
Vон	High-level output voltage	$I_{OH} = -1 \text{ mA}$	V _{CC} -0.6 V	V _{CC} -0.1 V		V
VOL	Low-level output voltage	I _{OL} = 1.6 mA			0.4	V
\/	Desitive main a innext three held valte as	V _{CC} = 3.3 V		1.6	2.4	V
V _{IT+}	Positive-going input threshold voltage	V _{CC} = 5 V		1.9	2.4	V
.,	No settler and a strengt through ald college	V _{CC} = 3.3 V	0.6	1.1		.,
V_{IT-}	Negative-going input threshold voltage	V _{CC} = 5 V	0.8	1.4		V
V _{hys}	Input hysteresis (V _{IT+} - V _{IT-})			0.5		V
l _{off}	Output leakage current	FORCEOFF = 0 V		±0.05	±10	μΑ
rį	Input resistance	$V_I = \pm 3 \text{ V to } \pm 25 \text{ V}$	3	5	7	kΩ

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25^{\circ}\text{C}$.

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4)

	PARAMETER	TEST CONDITIONS	MIN TYPT MAX	UNIT
tPLH	Propagation delay time, low- to high-level output	C _L = 150 pF, See Figure 3	150	ns
tPHL	Propagation delay time, high- to low-level output	C _L = 150 pF, See Figure 3	150	ns
t _{en}	Output enable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega, \text{See Figure 4}$	200	ns
^t dis	Output disable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega, \text{See Figure 4}$	200	ns
tsk(p)	Pulse skew [‡]	See Figure 3	50	ns

[†] All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

ESD protection

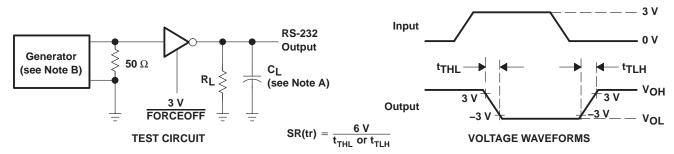
TERMI	NAL	TEST COMPITIONS	TVD	LINUT
NAME	NAME NO. TEST CONDITIONS		IYP	UNIT
RIN	8	НВМ	±15	kV

[‡] Pulse skew is defined as |tpLH - tpHL| of each channel of the same device.

AUTO-POWERDOWN SECTION

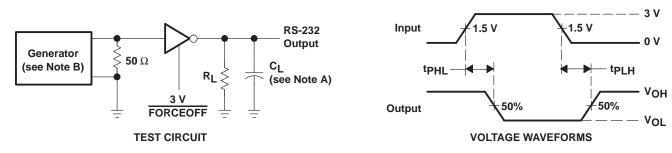
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	TEST C	MIN	MAX	UNIT	
V _{T+(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND,	FORCEOFF = V _{CC}		2.7	V
V _T -(valid)	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND,	FORCEOFF = V _{CC}	-2.7		V
VT(invalid)	Receiver input threshold for INVALID low-level output voltage	FORCEON = GND,	FORCEOFF = V _{CC}	-0.3	0.3	V
VOH	INVALID high-level output voltage	$I_{OH} = -1 \text{ mA}$, FORCEON = GND, FORCEOFF = V_{CC}		V _{CC} -0.6		V
VOL	INVALID low-level output voltage	I _{OL} = 1.6 mA, FORCE FORCEOFF = V _{CC}	ON = GND,		0.4	V


switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

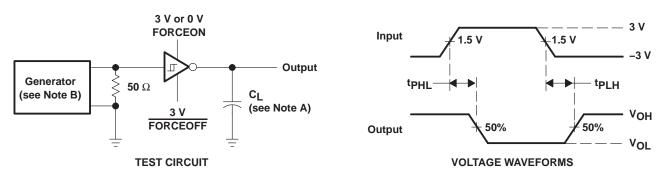
	PARAMETER	MIN 7	TYP†	MAX	UNIT
tvalid	Propagation delay time, low- to high-level output		1		μs
tinvalid	Propagation delay time, high- to low-level output		30		μs
t _{en}	Supply enable time		100		μs

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25^{\circ}\text{C}$.


PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

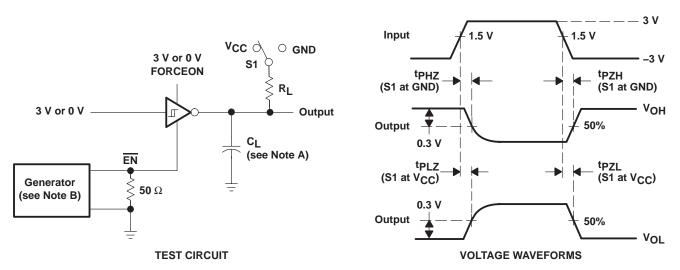
B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_f \le 10$ ns. $t_f \le 10$ ns.


Figure 1. Driver Slew Rate

NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \ \Omega$, 50% duty cycle, $t_\Gamma \le 10$ ns.

Figure 2. Driver Pulse Skew

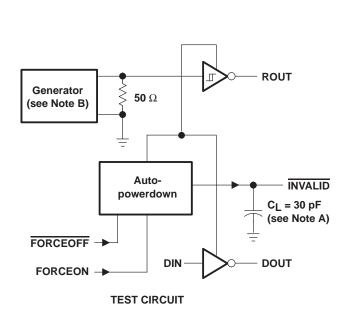


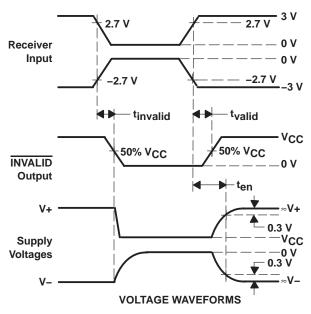
NOTES: A. C_L includes probe and jig capacitance.

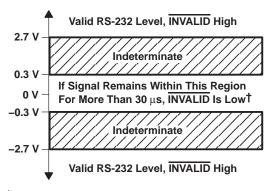
B. The pulse generator has the following characteristics: $Z_O = 50 \Omega$, 50% duty cycle, $t_\Gamma \le 10$ ns. $t_f \le 10$ ns.

Figure 3. Receiver Propagation Delay Times

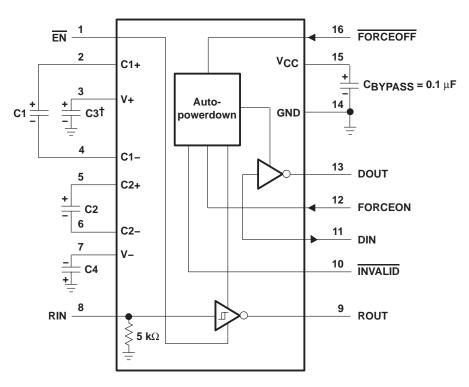
PARAMETER MEASUREMENT INFORMATION


NOTES: A. C_L includes probe and jig capacitance.


- B. The pulse generator has the following characteristics: $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns. $t_f \le 10$ ns.
- C. tpLZ and tpHZ are the same as tdis.
- D. tpzL and tpzH are the same as ten.


Figure 4. Receiver Enable and Disable Times

PARAMETER MEASUREMENT INFORMATION


 † Auto-powerdown disables drivers and reduces supply current to 1 $\mu\text{A}.$

NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 5 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_\Gamma \le 10$ ns. $t_f \le 10$ ns.

Figure 5. INVALID Propagation Delay Times and Driver Enabling Time

APPLICATION INFORMATION

 † C3 can be connected to V_{CC} or GND.

NOTE A: Resistor values shown are nominal.

V_{CC} vs CAPACITOR VALUES

VCC	C1	C2, C3, and C4
$\begin{array}{c} 3.3 \text{ V} \pm 0.3 \text{ V} \\ 5 \text{ V} \pm 0.5 \text{ V} \\ 3 \text{ V to } 5.5 \text{ V} \end{array}$	0.1 μF 0.047 μF 0.1 μF	0.1 μF 0.33 μF 0.47 μF

Figure 6. Typical Operating Circuit and Capacitor Values

ti.com 18-Sep-2008

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN65C3221IPWRG4Q1	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
SN65C3221IPWRQ1	ACTIVE	TSSOP	PW	16	2000	TBD	CU NIPDAU	Level-1-250C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

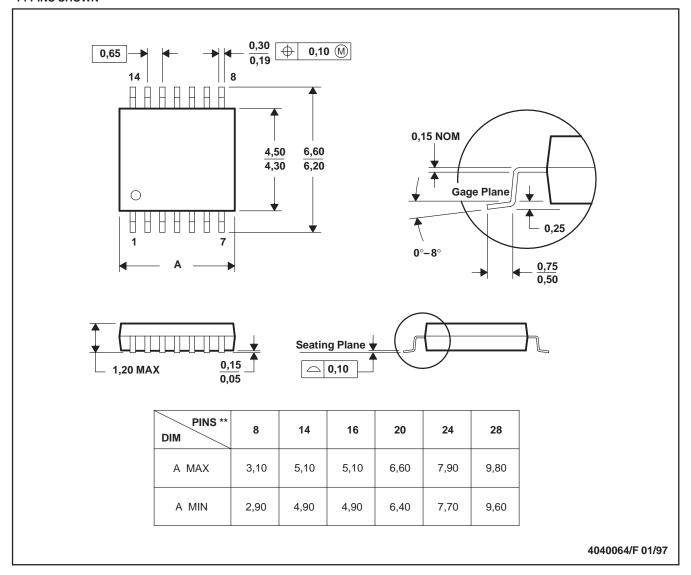
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN65C3221-Q1:

Catalog: SN65C3221


NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications					
Audio	www.ti.com/audio				
Automotive	www.ti.com/automotive				
Broadband	www.ti.com/broadband				
Digital Control	www.ti.com/digitalcontrol				
Medical	www.ti.com/medical				
Military	www.ti.com/military				
Optical Networking	www.ti.com/opticalnetwork				
Security	www.ti.com/security				
Telephony	www.ti.com/telephony				
Video & Imaging	www.ti.com/video				
Wireless	www.ti.com/wireless				

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated